

Sandra Nestler^{1,2}, Christian Keup^{1,2}, David Dahmen¹, Wiebke Bartolomaeus², Youness Boutaib², Matthieu Gilson^{1,3}, Holger Rauhut², Moritz Helias^{1,2}

¹ Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Germany

² RWTH Aachen University, Germany

Published in: Advances in Neural Information Processing Systems 33 (2020), Advances in Continuous and Discrete Models 2022.1 (2022)

Setup

- Reservoir Computing as computationally efficient machine learning system^{1,2}
- Task: Binary classification of one-dimensional, time-dependent stimuli
- Dependence of the performance on reservoir properties has already been studied^{3,4}

Non-linear vs. linear system

- Clear benefit compared to random u
- Gain from non-linearity varies with linear separability of stimuli
- Significant performance increase for low linear separabilities

The soft margin

- Joint optimization of input and readout projections
- Classification quality measure: margin

$$\kappa(u,v) = \min_{
u} (\zeta_
u v^{\mathrm{T}} y^{u,
u})$$

 Differentiable and less sensitive to exact realizations of stimuli: soft margin

$$\kappa_{\eta}(u,v) = -rac{1}{\eta} \ln \left[\sum_{
u} \exp(-\eta \zeta_{
u} v^{\mathrm{T}} y^{u,
u})
ight]$$

For large set of sample data: κ_{η} becomes cumulant generating function

$$\kappa_{\eta}(u,v)pprox v^{\mathrm{T}}M^{u}-rac{1}{2}\eta\,v^{\mathrm{T}}\Sigma^{u}\,v$$

 $\kappa \approx f(v, M(u), \Sigma(u))$

Dynamics and optimization

- Non-linear dynamics can be approximated as perturbation series for small α
- M becomes sensitive to second order stimulus statistics, \(\sum_{\text{olimitation}} \) becomes sensitive to fourth order
- For fixed reservoir, stimulus and readout time: considerable increase in classification performance

Conclusion

- Unfold recurrent dynamics via Green's functions
- Soft margin yields closed-form expressions for optimization
- Trade-off between separation and variability in readout direction
- Significant gain from non-linearity for weakly linear separable data
- Clear absolute performance gain also in linearly well separable ECG5000 dataset

random u

Classification by stochastic linear RNN

- Introduce noise to the dynamics to leverage sensitivity on exact realizations
- Minimize empirical risk of misclassification based on probability density

$$\min_{u,\omega,b} \widehat{R}_{(X,V)}(H) = \min_{u,\omega,b} \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}_{B}(H(x_{i}) \neq v_{i}) = \min_{u,\omega,b} \frac{1}{m} \sum_{i=1}^{m} \Phi\left(-v_{i} \cdot \frac{\langle v_{x_{i},u},\omega \rangle + b}{\sqrt{\omega^{T} A \omega}}\right)$$

$$\mathbb{P}(\operatorname{sign}(\langle y_{t},\omega \rangle + b) \neq v)$$

Optimization strategy

- Use Rademacher complexity to guarantee empirical risk convergence
- Contrast empirical risk for noisy and noise-free dynamics
- The optimal classifier is robust to outliers and perturbations

$y_t \sim \mathcal{N}(\nu_{x,u}, A)$

References

Jäger, H. (2001) Tech. Rep. GMD Report 148

² Maass, H., Natschläger, T. (2002) Neural Computation, 14.11, 2531-2560.

³ Bertschinger N, Natschläger T, Legenstein R. (2004) NeurIPS 17

⁴ Toyoizumi T, Abbott L. (2004) Phys. Rev. E., 84, 051908 ⁵ Chen, Yanping, et al. (2015) The ucr time series classification archive.

³ Universitat Pompeu Fabra, Barcelona, Spain